F# 1s the future of
0SS NET

Open FSharp 2017, San Fra

@lenadroid

Wow) !
F# (s So cool !

Powser fed aunel.
fum choun

Community
1S
Power

Independence

\Voice

Openness

Should | use F# for my project?

What makes F# F

+

Functional first, and more paradigms!
Strong typing and type inference
Default immutability

Fully OSS!

Cross platform

NET interoperability

F# interactive, explorative programming
Pattern matching

Type providers

Computation Expressions

IDEs OSes and platforms

+ VS Code
i + Windows
+ Xamarin
Li
+ Visual Studio + LInux
+ 0SX

+ Rider
+ Mobile (i0S, Android, etc.)

+ |oT (i.e. Azure loT)

+ Atom with lonide

+ Sublime

+ Vim + Docker
+ GPUs

+ Emacs

+ MonoDevelop + JS ecosystem through Fable

+ More

Myths about F

+ Itis only for scientific projects and math

+ |tis beyond complicated to get started with

public class Item
{
public Item(string id, string name, double price)
i
Id = id;
Name = name;
Price = price;

public string Id { get; }
public string Name { get; }

public double Price { get; }

public interface IShoppingCart

{
IShoppingCart AddItem(Item item);
IShoppingCart Empty();

public class EmptyShoppingCart : IShoppingCart
{ type Item =
. g . Id: strin

public IShoppingCart AddItem(Item item) { & E str%ng
)¢ Price: float }

return new NonEmptyShoppingCart(ImmutableList.Create(item));
} type ShoppingCart =

{ Items: Item list }

public IShoppingCart Empty() member this.Addl item = { this with Items = item :: this.Items }
{ static member Empty = { Items = [] }

return this;

public class NonEmptyShoppingCart : IShoppingCart
{

public NonEmptyShoppingCart(ImmutableList<Item> items)

{

Items = items;

public IShoppingCart AddItem(Item item)

{
return new NonEmptyShoppingCart(Items.Add(item));

public IShoppingCart Empty()
g

return new EmptyShoppingCart();

public ImmutableList<Item> Items { get; } by @kot_201 0

public interface ICommand { }

public class AddItem : ICommand

{
public AddItem(Item item)
{
Item = item;
}
public Item Item { get; set; }
}

type Command =

public class Buy : ICommand
AddItem of Item

|

{ | Buy

public static Buy Instance { get; } = new Buy(); | Leave

private Buy() { } | GetCurrentCart
}
public class Leave : ICommand
{

public static Leave Instance { get; } = new Leave();

private Leave() { }
}

public class GetCurrentCart : ICommand

{
public static GetCurrentCart Instance { get; } = new GetCurrentCart();
private GetCurrentCart() { }

} by @kot_2010

P Voo v
Just starting to teach my 9 year old nephew
programming, and it is amazing how easy he
is grasping the concepts using #fsharp

6:48 AM - 12 Aug 2017

3 Retweets 21 Likes *c [‘ & @;@a £

O 1 n 3 VIP T~

@ Tweet your reply

Mark Gray @MarkRGray - Aug 12 v
Replying to @MarkRGray

Tabs v spaces: he chooses spaces naturally :-D #ThelmportantThings

O 1 [Q 2 &

vaskir @ @kot_2010 - Aug 14 —
Ci{\ because tabs are invisible magic.

O T V) &

Java engineers exploring F

Data Science engineers exploring F

it | Fotowing
v
: @DynamicWebPaige

It's functional like Clojure; you can use .NET
tooling; & it's supported in Jupyter
notebooks?

Okay: @lenadroid just convinced me to try F#

9:50 AM - 25 Aug 2017 from Redmond, WA

5Retweets 21Likes @HE SO @ O H P S ©

CH?FH?

*Is 1t harder to
learn F# than C#?/

L)

= Faster "time to market”

=> Correctness in business logic

=> Ease of maintenance

-> Freedom of options, fully 0SS

=> Helpful and friendly community

=> Cutting edge language features

-> Smaller code base

=> Any C# programmer can learn F#

=> Can use F# with existing C# libraries

Thousands of Github repositories use F#
Dozens of thousands users all over the world
More than 140 contributors to fsharp/fsharp

More than 5,150 membersin F# meetups everywhere

Personal top favorites
0SS F# projects

MBrace cloud { ...

Run scalable, distributed data parallel workflows in the cloud

. open MBrace.Core
: open MBrace.Flow

: let numberOfDuplicates
' OfCloudFilesByLine ["container/data0.csv" ; "container/datal.csv"]
map (fun line -> line.Split(',"'))
map (fun tokens -> int tokens.[0], map int tokens.[1 1)

, groupBy (fun (id,_) -> id)
, filter (fun (_,values) -> length values 1)
[length

cluster.Run

@ Cloud Workflows
@ Concurrent

@ Fault Tolerant
@ High Availability

@ Cloud Scripting from Your Editor
@ Programmatic Data Upload

@ Automatic Code Transport

@ Extensible Data Serialization

@ Fault Tolerance Options

MBrace.Core - Cloud Programming Made Simple

Confused by the cloud? Cloud computation and data can be simple, if using the right framework. MBrace.Core helps the cloud

empower you, not enslave you.

@ Functional Cloud Data Flows
@ Partitioned Cloud Vectors
@ Abstract and Reuse Common Cloud Patterns

@ strong Typing For Cloud Data

@ Full F# and C# Support
@ Cloud Vendor Neutral
@ 100% Open Source

@ Extensible Data Serialization

MBrace.Azure - Included Features

Whether new to Azure or an advanced Azure developer, MBrace.Azure brings Azure storage and compute to your fingertips.

@ Full F# and C# Support

@ Job Creation and Control

@ Integrated Cloud Logging

@ Smooth Transitions From Scripts to Code

@ Nuget Packages

@ All MBrace.Core Features

@ Interoperate With Azure Services
@ Local Prototyping

@ Native CPU Performance

@ 100% Open Source

=® SUAVE®

Lightweight web server for F# web applications

Simple non-blocking web server

open System
open System.Threading
open Suave

[<EntryPoint>]
let main argv =
let cts = new CancellationTokenSource()
let conf = { defaultConfig with cancellationToken = cts.Token }
let listening, server = startWebServerAsync conf (Successful.OK "Hello World")

Async.Start(server, cts.Token)
printfn "Make requests now"
Console.ReadKey true |> ignore

cts.Cancel()

@ // return an integer exit code

Routing in Suave

open Suave

open Suave.Filters
open Suave.Operators
open Suave.Successful

let app =
choose

[GET >=> choose

[path
path
POST >=>
[path
path

startWebServer

"/hello" >=> OK "Hello GET"
"/goodbye" >=> 0K "Good bye GET"]
choose

"/hello" >=> OK "Hello POST"
"/goodbye" >=> 0K "Good bye POST"]]

defaultConfig app

é

C http://fable.io/repl

N —

let factorial n =

OO dOOULT S WN =

[y
S

let rec loop i acc =

match i with

| @ | 1 == acc

| _ == loop (i-1) (acc * i)
loop n 1

factorial 10

|> printfn "si"

OO dNOOULL S WN =

NNNR R R R R[22 2 2
NP O OWWOWNOOULAWNRSS

Fable v1.2.0, FCS v14.0.2, Babel v6.26

import { printf } from "fable-core/String";
export function factorial(n) {
const loop = function (i, acc) {
loop: while (true) {
const $varl =i ===07? [0] : 1i===1 7 [0] : [1];

switch ($var1[o]) {
case 0:
return acc | 0;

case 1:
const $var2 =i - 1;
acc = acc * 1ij;
i = $var2;
continue loop;

return loop(n, 1) | 0;

b
replLog(printf("%i"))(factorial(10));

F# for Web

& SAFE Stack - 5
safe @safe_stack Following

Hi alll We're looking forward to engage with
#fsharp community to make web
applications easier than ever over the coming
weeks!

6:10 AM - 22 Sep 2017

11 Retweets 14 Likes @ ”’ oﬁ)M Q B 9%

© 2 n 1 ¥ 14 &

@ Tweet your reply

Don Syme @dsyme - 4h

Replying to @safe_stack

Link? :)

Q 2 T QO 1 &

SAFE Stack @safe_stack - 4h v

Whoops. safe-stack.github.io is a great place to start.

More F# for the Web and serverless

7\ freya {...

elegant. modern. powerful.

G I R A F F E functional web programming for f#.

WebSharper.

F# and Docker containers

Kubernetes '4 Hashicorp Nomad

Apache Mesos M Azure Container Instances

AVAVA
AVAVAVA
VAVAVAY

VAVAY

@ Docker Swarm “}1‘ Amazon EC2 Container Service

Endless opportunities...

Paket
Better dependency management

paket.dependencies
paket.lock
paket.references
paket.template

Expecto

+ Tests are first class values

+ More flexibility and leverage when writing tests
+ Parallel and async by default

+ Integrates with lonide, and has a VS adapter

+ Works well with FsCheck

open Expecto

let tests =
test "A simple test" {
let subject = "Hello World"

Expect.equal subject "Hello World" "The strings should equal”
}

[<EntryPoint>]
let main args =

runTestsWithArgs defaultConfig args tests

Expecto is

“Type provider” F# projects

Data formats type providers
SQL type provider

R type provider

Swagger type provider

IONIDE INTRODUCTION FEATURES GETTING STARTED SUPPORT CONTRIBUTE

INTRODUCTION

F# Development

lonide includes all the necessary features you'd find in a modern IDE - autocomplete, tooltips, document
formatting, syntax and error highlighting, and many more.

= Testfs o

module Test

[<EntryPoint>]

string (] -> int

let main argv
printfn "XA" ard
[]

nullarg

All this is a result of
community work

What can each of us do to make F#

even better?

Solve issues and ask questions

+ Attemptto solve it yourself first

+ Contribute to documentation

+ Write answers on StackOverflow or Quora (even if it seems easy now)
+ Join FSSF and participate in F# mentorship program

+ Ask and discuss questions on Twitter #fsharp!

+ Start your project on Github! Look at “up-for-grabs” items.

Develop your ideas. Everybody has one

+ Don't ignore your ideas

+ Discuss it with F# Community

+ Tweet #fsharp

+ Join F# Slack

+ Bring FSSF Board's attention to it

+ You will always find advice and help!

F

Ninjas, share your experience

+ Live stream your F# coding, mentor beginners

+ Write blog posts and create videos to help others

+ Walk through your contributions to ecosystem & tools
+ Share knowledge about F# compiler

+ Experiment

+ Create next new revolutionary F# project, continue to contribute!

Live Streaming F

Krzysztof Cieslak
T Koot clesl D -
In around 30 min I'll try streaming some
#fsharp / Fable / lonide hacking -

k_cieslak - Twitch
F#, Fable and lonide hacking - adding profiler to VSCode

twitch.tv

dl
—J

6:29 PM - 20 Jul 2017

7 Retweets 10 Likes 0 w&,@ '— .aﬁ @

Maintaining an F#

project?

+ Mark items for new contributors as “up-for-grabs”

+ Maintain your documentation up to date

+ Create examples on how to contribute

+ \Welcome new ideas and appreciate new contributions

Companies that use F

+ Publicly state the fact that you use F#
+ Share your F# success stories

+ Submit a testimonial http://fsharp.org/testimonials

+ Write blog posts on how F# helps you achieve more

You will attract more talent from the market!

Expand F# usage at your job

+ Create prototypesin F#

+ Do it gradually, use it with existing C# code

+ Teach your colleague F#

+ Demonstrate how powerful, quick, simple, concise and efficient F# is
+ Emphasize faster time-to-market of F# code

+ Clearly show your boss that you save time, money and support efforts

F# 1s the future of 0SS .NET
because
we are making 1t so.

